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Abstract: Tourism networks are an important research part of tourism geography. Despite the
significance of transportation in shaping tourism networks, current studies have mainly focused on
the “daily behavior” of urban travel at the expense of tourism travel, which has been regarded as an
“exceptional behavior”. To fill this gap, this study proposes a framework for exploring the spatial and
temporal characteristics of urban tourism travel by taxi. We chose Shenzhen, a densely populated
mega-city in China with abundant tourism resources, as a case study. First, we extracted tourist
trips from taxi trajectories and used kernel density estimation to analyze the spatial aggregation
characteristics of tourist trip origins. Second, we investigated the spatial dependence of tourist trips
using local spatial autocorrelation analysis (Getis-Ord Gi*). Third, we explored the correlations
between the tourist trip origins and urban geographic contextual factors (e.g., catering services and
transportation facilities) using a geographically weighted regression model. The results show the
following: (1) the trends between the coverage of tourist travel networks and the volume of tourist
trips are similar; (2) the spatial interaction intensity of urban tourism has grouping and hierarchical
characteristics; and (3) the spatial distribution of tourist trips by taxi is uneven and influenced by the
distribution of urban morphology, tourism resources, and the preferences of taxi pick-up passengers.
Our proposed framework and revealed spatial and temporal patterns have implications for urban
tourism traffic planning, tourism product development, and tourist flow control in tourist attractions.

Keywords: tourist flow; spatial-temporal dynamic; taxi trajectory data; spatial structure; Shenzhen

1. Introduction

Transportation is an essential part of the tourism system and serves as the basis for
the movement of tourists between the origin, destination, and different attractions to
engage in recreational and tourism activities. In tourism cities, metros, buses, and taxis
are the popular public transportation services for tourists. Of these, taxis only account for
a small proportion of public transport travel due to the promotion of green and shared
travel in recent years and the restrictions on taxi reservations. However, taxis are still
the most favored transport mode for tourists owing to their convenience, quickness, and
“point-to-point” accessibility [1,2]. Unlike the fixed routes and stops of buses and subways,
the pick-up and drop-off locations in taxi trajectory records are highly related to human
activities [3]. Therefore, the analysis of the spatial and temporal characteristics of taxi travel
and their relationship with the configuration of tourist attractions and tourist supporting
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elements (i.e., geographic contextual factors in urban geography) are important for the
shaping of tourism perception and the sustainable development of urban tourism systems.

In the past few years, most researchers have used questionnaires to collect tourism
data, such as mode of transportation [4,5], attraction choices, and tourism satisfaction.
The sampling of tourist movements [6,7] is often conducted using satellite and Wi-Fi
positioning technologies. Most of these studies have analyzed preferences, impressions,
perceptions, and the distribution of tourists in a given area and at a given time to guide
tourism product development and tourist flow management. However, this approach
makes it difficult to provide timely feedback on tourist dynamics and can be costly when
applied on a large scale. In recent years, digital footprints have become a widely used
method in tourism research. From tourism web portals and social media platforms, data
such as travelogues and photos of tourists can be collected [8–10]. This has played an
important role in facilitating the development of the spatial characterization of tourism
flows toward precision and personalization but has also limited its large-scale analysis
capabilities. However, the mobility that underpins urban tourism activity is often neglected
in these studies, which makes it difficult to extract the spatial patterns of tourism traffic
from web data.

A growing number of studies have attempted to use taxi trajectory data to analyze
the operational characteristics of urban transport [11–18], traffic state identification [19,20],
traffic flow parameter calculations [21,22], optimal route selection [23], and daily travel
characteristics and patterns research [16,18]. For example, it has been used to analyze travel
hotspots according to passenger pick-up and drop-off locations and the relationships with
land use [15,24] and explain the functional structure of cities [13,15,25,26]. Most of the
literature focuses only on the behavior of urban residents during the workday. The spatial
and temporal characteristics of tourists by taxi and their relationship with the organization
of tourist attractions have received little attention [27]. Although taxi trajectory data
have the advantage of broad coverage and dynamic characteristics, they have not been
effectively used in the study of urban tourism traffic patterns and the factors affecting them.
Furthermore, modeling the flow status in tourism is critical to understanding the linkages
between attractions within a destination and the entire tourism system. It can explain
how tourism systems are shaped and reconfigured [3,11,28,29]. Intra-city tourist flows are
strongly integrated with the transportation network. However, academic specialists in the
field of transport and tourism have largely remained compartmentalized. Few studies have
focused on the dynamics of urban tourism transport in a destination from the perspective
of tourists.

Although good progress has been made in previous studies of daily taxi travel, few
have explored the behaviour and structural characteristics of taxi travel during the peak
tourism period. This study aims to fill these gaps. We have taken taxi trajectories in
Shenzhen as a case study. In China, ‘May Day’ (a.k.a. International Labor Day) is one of the
traditional holidays and the preferred date for tourism in the first half of the year. During
this period, Shenzhen, as a coastal tourist city, receives numerous tourists. To investigate
the spatial and temporal characteristics of tourists’ travel by taxi, we built a taxi trajectories
dataset during ‘May Day’. We explored the taxi trajectories from two perspectives: trip
origins and travel networks of attractions (i.e., building a travel network for each attraction).
This study makes two major contributions to the literature. Firstly, unlike previous studies
on tourist visitation patterns at the scenic scale and the characteristics of tourism network
structures at the regional scale, the scale of this paper focuses on the intra-city tourism.
We use taxi data to characterize intra-city tourism flows and the structure of attraction
networks. It extends the exploration of complex urban tourism flows. Second, while
most of our previous knowledge of tourism flows comes from manual surveys and panel
data, this study provides a bottom-up objective perspective that reveals the geographical
relevance of tourist trips and the differences in intra-city tourism network structure and
spatial attractiveness by taxi data.
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The remainder of this paper proceeds as follows. Section 2 describes the study area,
the methodology, and the key algorithms used in this paper, including the KDE, Getis-Ord
Gi*, GWR, and complex network metrics. Section 3 presents the experimental results.
Section 4 gives discussions, and the final section concludes this paper.

2. Data and Methods
2.1. Study Area and Dataset

Shenzhen is a coastal city in southern China with a subtropical maritime climate and
is a famous tourist city. Owing to its unique geographical location near Hong Kong and
Macau, it attracts many domestic and foreign tourists every year. The annual report of
Shenzhen tourism statistics shows that in 2015, tourist accommodation facilities received
53.752 million overnight visitors throughout the year, an increase of 7.7% as compared to
the previous year. Among them, overseas tourists accounted for 22.67%, and domestic
tourists accounted for 77.33% (http://wtl.sz.gov.cn/, accessed on 26 June 2021). In the
same year, taxi travel accounted for 10.5% of public transport travel in Shenzhen. To
investigate the characteristics of tourism travel by taxi, we selected the top 26 attractions
ranked by tourists on Ctrip.com (a popular Chinese travel booking and travel diary sharing
website) and the taxi trips to these 26 attractions from May 1 to 3, 2015. These attractions
are shown in Figure 1 and listed in Table 1. As can be seen on Figure 1, taxi trip origins are
mainly distributed in three regions of Nanshan, Futian, and Luohu, where there are more
tourist attractions.

1 

 

 

Figure 1 

 

Figure 6 

Figure 1. The spatial distribution of tourist attractions and trip origins in Shenzhen, China.

The trajectory data were collected by 16,828 GNSS (Global Navigation Satellite System)-
equipped taxis operating in Shenzhen, with an average sampling frequency of 30 s. In
total, there are 69.16 million GNSS records. Each record includes the taxi’s identifica-
tion, coordinates (i.e., latitude and longitude), instantaneous speed, time, and occupancy
state (loading passengers or not). To explore the relationship between tourist trip ori-
gins and geographic contextual factors, this study also used POI (Point of Interest) data
and road network data. The POI data were crawled from the open API of Gaode Maps
(https://lbs.amap.com/api/webservice/guide/api/search, accessed on 26 June 2021),
with over 1.7 million records as of the end of September 2018 [30], and each POI record
includes attributes such as name, address, type, longitude, and latitude. The POI data are

http://wtl.sz.gov.cn/
https://lbs.amap.com/api/webservice/guide/api/search
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divided into 11 types: catering services (CS); corporate enterprise services (CES); shopping
services (SS); transportation facilities (TF); finance and insurance services (FIS); science,
education and culture services (SECS); residential housing (RH); living services (LS); sports
and leisure services (SLS); health care services (HCS); and accommodation services (AS).

Table 1. List of tourist attractions in Shenzhen.

Index Name Index Name Index Name

1 Lianhuashan Park 10
Xianhu

Botanical
Garden

19 International Garden
& Flower Expo Park

2 Dameisha WaterFront
Park 11

Guanlan
Printmaking

Village
20 Lychee Park

3 Jinxiu China
Folk-Custom Village 12 Fenghuangshan

Forest Park 21 Yangtaishan Forest
Park

4 Wutongshan Park 13 OCT East 22 Happy Coast

5 Happy Valley 14
Holland

Shenzhen
Flower Town

23 Safari Park

6 Zhongyingjie 15

Hongshulin
Natural

Conservation
District

24 Donghu Park

7 Xiaomeisha
WaterFront Park 16 Window of

World 25 Rose Coast

8 Sea World 17

Gankeng
Hakka

People Small
Town

26 Talents Park

9 Dafen Village 18 Qingqing
World

2.2. Methods

The spatial structure of urban tourist trips contains three components: trip origins,
tourist attractions, and travel networks. To analyze the spatiotemporal characteristics
of tourist trips from both supply and demand perspectives, we first processed the taxi
trajectories to extract the tourist trips. Second, we analyzed the aggregation trends and
spatial dependence of tourist trip origins and their correlations with geographic contextual
factors by using KDE, Getis-Ord Gi*, and GWR. Third, we established tourist travel
networks and analyzed their structure and characteristics using complex network metrics
to explore the mechanism of the formation of the tourist network for each attraction. The
methodology in this paper is divided into the following parts: building a tourist trip dataset,
spatial aggregation of tourist trip origins and spatial dependence on geographic contextual
factors, and quantitative analysis of the travel network structure for each attraction. All
data analysis was conducted on a Dell Tower 7810 server with an Intel Xeon CPU, 32 GB
of RAM. Taxi trajectory data were pre-processed using the Python. Tourist trip data was
mapped and spatially analysed using ArcGIS.

The methodological framework is illustrated in Figure 2.
Step 1: Building tourist trip dataset.
The original collected taxi trajectories are disorganized, and tourist trips need to be

extracted for subsequent tasks.
(1) Extraction of taxi trips.
We first identified and removed trajectory records with large latitude and longi-

tude jumps and speed anomalies. Next, we used a map-matching algorithm called ST-
Matching [31] to align all trajectory points (identified by ride status) between passenger
pick-up and drop-off locations (identified by the occupancy states) with the road network.



www.manaraa.com

ISPRS Int. J. Geo-Inf. 2021, 10, 445 5 of 18

(2) Selecting taxi trips for tourism.
The taxi trip data are divided into two types of trips: tourist trips and residential

trips (i.e., trips for other activities of local residents). First, we sketched out the tourist
drop-off areas of 26 tourist attractions to extract tourist trips. Considering the randomness
of taxi drop-off locations and the influence of satellite positioning accuracy, we repeatedly
compared and corrected the boundaries of the potential drop-off area of each attraction
near the entrance with the help of Google satellite images and Baidu Street View (https:
//map.baidu.com/, accessed on 26 June 2021) to ensure the reliability of the extracted
tourist trips. If the taxi drop-off location is in the potential drop-off area of a tourist
attraction, this trip is considered to be a tourist trip. The final tourist trip dataset contained
37,878 records.
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Step 2: Spatial aggregation of tourist trip origins and spatial dependence on geo-
graphic contextual factors.

The taxi travel network comprises trip origins, trip routes, and trip destinations.
Of these, trip origins are commonly used for predicting trip generation rates and trip
distribution in the field of trajectory-based urban travel studies, as well as for traffic
impact, association relationship, and driver factors analysis. In this step, we focus on the
aggregation trends of tourist trips by taxis, the spatial dependency characteristics, and the
influence of geographical contextual factors.

(1) Aggregation trends and spatial dependencies of tourist trip origins.
We used kernel density (KDE) (https://desktop.arcgis.com/en/arcmap/10.3/tools/

spatial-analyst-toolbox/kernel-density.htm, accessed on 26 June 20211) [32] to estimate
the aggregation trends of trip origins. KDE is a non-parameter calculation algorithm for
surface density, which calculates the data aggregation status of the entire region based on
the input dataset, to produce a continuous surface with density. A larger kernel density
value indicates a stronger concentration—i.e., more tourists traveling from this location.

Next, we used the Getis-Ord Gi* (https://pro.arcgis.com/en/pro-app/latest/tool-
reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm, accessed
on 26 June 2021) [33] algorithm to explore the local spatial dependence of the tourist trip
origins to determine the hot or cold regions for tourism travel. The Gi* statistic is the ratio of
the sum of observations at locations around the target location to the sum of locations at all
locations within a given distance range. It is used to identify whether there is a dependence
between the target location and the surrounding locations in terms of high and low values.
The Gi* statistic returns the z-score value for each element in the dataset. For positive
z-scores, the higher the z-score, the tighter the spatial dependence for higher values. For

https://map.baidu.com/
https://map.baidu.com/
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/kernel-density.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/kernel-density.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
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negative z-scores, the lower the z-score, the tighter the spatial dependence for lower values.
Thus, the Gi* statistic can identify significant hot spots (high-value spatial dependence) and
cold spots (low-value spatial dependence).

(2) Correlation between geographic contextual factors and trip origins.
To identify the factors correlated with trip origins, we created buffers with radii of 20,

50, 100, 200, and 300 m at each trip origin and counted the number of each type of POI
within each buffer. We used the number of the 11 POI types as the optional explanatory vari-
able and the kernel density value at the trip origin as the dependent variable to build a geo-
graphically weighted regression model, which was used to test the validity of the explana-
tory variables. Geographically weighted regression (GWR) (https://pro.arcgis.com/en/
pro-app/latest/tool-reference/spatial-statistics/geographically-weighted-regression.htm,
accessed on 26 June 2021) [34] introduced geographic location into the model parameters
and used locally weighted least squares for parameter estimation. Therefore, the vari-
ables vary with spatial location and its model coefficients can better reveal the spatial
non-homogeneity of geographic elements.

Step 3: Quantitative analysis of tourists’ travel networks.
Finally, 26 travel networks were created for each tourist attraction based on the tourist

trip data. The nodes of a travel network comprise the trip origins, the road intersections
through which travel routes pass and target tourist attractions. The edges of a travel
network are composed of sections between road intersections. The resulting travel net-
work integrates discrete trip origins and tourist attractions into a holistic system that can
represent the spatial range of attractiveness and services of each attraction. To compare
the structural differences in travel networks, complex network metrics such as average
degree, network diameter, average path length, and average clustering coefficient were
used. The specific details of each metric are not presented here and can be found in the
relevant literature [35].

3. Results
3.1. Spatiotemporal Characteristics of Tourist Trips

To analyze the differences between the trip types, we counted the number of trips per
hour. The horizontal axis in Figure 3 represents 72 time slots in three days. Figure 3a shows
the volume of residential trips from May 1 to May 3, and Figure 3b shows the number
of tourist trips to the 26 attractions. As shown in the figures, residential travel shows a
cyclical pattern. The least number of trips is at 06:00. Subsequently, the travel volume
gradually increases. The peak travel times are 11:00, 15:00, and 23:00. Unlike residential
trips, there are two peak times for tourist trips—11:00 and 15:00—and the lowest tourism
volume occurs at 05:00. Another difference between the two is that during ‘May Day’,
daily residential trips show the same trend, with similar peak sizes; traffic to attractions,
however, show a downward trend, with the lowest volume occurring on the last day
of the holiday.
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Figure 4a,b show the travel time and distance of tourist trips, respectively. In terms
of travel time, short-distance trips of less than 15 min are larger, accounting for 67.89%,
and trips of less than 45 min account for 95.48% of tourist travel traffic. This indicates
that most travel activities during the holidays are mainly short-distance trips, and only
a few people spend a long time engaged in travel activities. In terms of travel distance,
trips within 8 km are larger, accounting for nearly 71.25%, and 94.86% of the trips occur
within 23 km. Although the trends in Figure 4a,b are similar, there are minor differences,
such as the existence of a plateau around 20 km, which shows a long tail and is not very
smooth. We fitted the travel time and distance distributions, and after comparing the power
law distribution, the gamma distribution, and the generalized extreme value distribution
(GEV, as shown in Equation (1)) (https://www.mathworks.com/help/stats/generalized-
extreme-value-distribution.html, accessed on 26 June 2021), we found that the GEV better
reflects the climbing and falling trend of travel time and travel distance. After calculation,
the GEV distribution function for travel time had parameters of k 0.3441, σ 2.0386, and µ
2.8441. The GEV distribution function for the travel distance had parameters of k 0.4342, σ
16.6224, and µ of 19.822.

f (x) = (
1
σ
) exp

(
−
(

1 + k
(x − µ)

σ

)− 1
k
)(

1 + k
(x − µ)

σ

)−1− 1
k

(1)
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To characterize the travel volume on 491 traffic analysis zones (TAZs) during the
‘May Day’, we conducted a spatial dependency analysis of trip origins (as shown in
Figure 5). Figure 5a shows that the TAZs with numerous trips are Baishizhou, Hong-
shuwan, Huaqiaochen, Dameisha, Haiyabaihuo, and Guomao. TAZs with a high volume
of tourist trip origins can be divided into three types. The first type includes TAZs with
popular attractions, such as OCT East, Dameisha Waterfront Park, and Xiaomeisha Water-
front Park. This type of TAZ is less popular, but most trips occur in taxis. The second type
is transportation hubs, such as Luohu Port and Baoan Airport, where taxi trips to tourist
attractions are more frequent. The third type is densely populated residential areas, such as
Zhuzilin. However, there are also some areas where no taxi trips occur, such as Guangming
District, northern Longgang, northern Pingshan, and the Dapeng District. Figure 5b shows
the spatial dependence characteristics using the Getis-Ord Gi* optimization statistics tool.
In Figure 5b, the red color indicates the spatial dependence of high values, and the blue
color indicates the spatial dependence of low values. The results show that the TAZs with
high trip volumes are concentrated in the south, including the Nanshan and Futian districts.
The TAZs with low trip volumes are located in Guangming, Longgang, and parts of Bao’an,
Longhua, and Pingshan.

https://www.mathworks.com/help/stats/generalized-extreme-value-distribution.html
https://www.mathworks.com/help/stats/generalized-extreme-value-distribution.html
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3.2. Correlation between Tourist Trip Origins and Geographic Contextual Factors

To identify the aggregation trend at trip origins, we performed kernel density estima-
tion with 30, 50, 100, 150, 200, 250, and 300 m as bandwidths. The experimental results
indicate that the distribution pattern of the trip aggregation area on the density map is sim-
ilar. Here, we take the density map at 100 m bandwidth as an example. Figure 6 indicates
that the main travel aggregation area during ‘May Day’ includes four areas: Shenzhen
Railway Station, the Damaisha scenic area, Happy Valley, and Hongrui Community.

1 

 

 

Figure 1 

 

Figure 6 
Figure 6. Density distribution of travel origins.

For modeling the correlation between the spatial variation of tourist origins and the
distribution of geographic environmental factors during the peak tourist season, a GWR
model was developed using POI data and tourist trip origin data. First, we extracted
the density values of each trip origin from seven kernel density maps—30, 50, 100, 150,
200, 250, and 300 m—and then established buffer zones with the corresponding size at
each trip origin and extracted the number of each type of POI within buffer zones. At
each scale, we chose the kernel density value at trip origin as the dependent variable and
the number of 11 types of POI as the alternative explanatory variable. We examined and
screened the independent variables under each of the seven scales using the OLS algorithm.
The criteria for variable screening and modeling were (1) to ensure successful modeling,
(2) to be able to explain tourist trip characteristics, (3) to satisfy significance tests, and
(4) to avoid multicollinearity and spatial correlation. The final goodness-of-fit of the model
was 0.9489 under a bandwidth and buffer of 100 m. R2-Adjusted, it was 0.948554. Seven
categories of geographic environmental factors—CS, SLS, TF, RH, AS, SS, and SECS—were
selected as the final explanatory variables in the GWR model.

The regression coefficients of the geographic environmental factors differed signifi-
cantly, among which the mean values of five factors—CS, SLS, TF, RH, and AS—are positive
for tourist travel, and those of the coefficients of SS and SECS are negative for tourist travel.
The statistical results of the correlation coefficients of the POI for each type are shown in
Figure 7. Among the factors that have a positive mean value of coefficients, the ranking
is: TF, AS, RH, SLS, and CS; and the ranking of the means of negative coefficients is SS
and SECS.
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We visualized the regression coefficients spatially. Figure 8 shows that the POIs nega-
tively correlate with tourist trips in red color and are positively correlated in green color.
The main TAZs are labeled in Figure 8a–g. They include Wanxia Station (WX), Keyuan
Station (KY), Xiangmihu Station (XMH), Dafen Station (DF), Baoti Station (BT), Dameisha
(DMS), Nanshan Post Office (NSPO), Pengxinghuayuan (PXHY), Qiaocheng East Road
(QCDL), Buji Station (BJ), Meilin Station (ML), Guomao Station (GM), Linzhi Station (LZ),
Linzhi Station (LZ), Nigang Station (NG), Zhuzilin Station (ZZL), Mangrove Bay Station
(MBS), and Shaibu Station (SB). The figures show that the regression coefficients are highly
spatially heterogeneous. The correlations of different types of POIs with tourist trips vary
considerably in each administrative district. For example, in the Baoan District, there
is a positive correlation between transport facilities and accommodation services, and a
negative correlation with residential housing. In Longhua District, there is a positive corre-
lation between transport facilities and catering services, while accommodation services,
residential facilities, and sports and leisure services are negatively correlated. Nanshan,
Futian, and Luohu exhibit heterogeneity in the correlations between the various types of
tourist facilities within them.

3.3. Structural Characteristics of Tourist Travel Networks

To explain the connections between the tourist attractions and how the tourism flow
network is shaped, taxi trajectories associated with 26 attractions were selected from the
taxi trip data to build travel networks of attractions. Figure 9 shows the travel networks for
the 25 tourist attractions, and they clearly show the spatial coverage of the 25 attractions.
Notably, Rose Coast has a smaller attraction network and is not plotted here. The figure
shows that (1), (2), (4), (5), and (7) cover the widest range; they are: Lianhuashan Park,
Dameisha Waterfront Park, Wutongshan Park, Happy Valley, and Xiaomeisha Waterfront
Park. Figure 9(6), (10), (11), (14), (15), (17), (18), and (24) have the smallest spatial extent:
Zhongyingjie, Xianhu Botanical Garden, Guanlan Printmaking Village, Holland Shenzhen
Flower Town, Hongshulin Natural Conservation District, and Gankeng Hakka People Small
Town. The remaining areas are the most densely covered: Jinxiu China Folk-Custom Village,
Sea World, Fenghuangshan Forest Park, OCT East, Window of World, and International
Garden & Flower Expo Park.

In addition, we divided the number of road sections of the travel network by the
total number of road sections in Shenzhen to obtain the coverage of each tourist attraction.
The statistical results of the coverage ratio for each attraction are shown in Figure 10. The
four attractions with the greatest coverage are (1), (16), (22), and (26)—Lianhuashan Park,
Window of World, Happy Coast, and Talent Park. The ones with the least coverage are
(11), (17), and (25)—Guanlan Printmaking Village, Gankeng Hakka People Small Town,
and Rose Coast.
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Furthermore, the number of tourist trips by taxi for each attraction is summarized
in the stacked bars shown in Figure 11. The blue, light green, and dark green bars show
the number of tourist trips for each attraction on May 1st, 2nd, and 3rd respectively. If
the number of tourists increases daily, only the last day’s number of tourists can be seen.
If the number of tourists decreases, the tourist volume for three days can be seen. In the
remaining the cases, only two days’ tourist volumes can be seen. The figure shows that the
tourist volume at attractions (1), (4), (5), (8), (9), (20), and (24) decreases daily, where (1)
and (24) have less decreasing tourist volume for the first two days. Attractions that reached
their peak on the second day are (2), (3), (7), (14), (15), (16), (18), (19), (22), (23), and (26).
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Figure 11. Tourist flow distribution for attractions in three days.

We calculated complex network metrics for 26 attractions using four metrics per
attraction (as shown in Table 1). The results are illustrated in Figure 12. For the average
degrees, the largest value is (22) Happy Coast, and the smallest value is (2) Dameisha
Waterfront Park. The largest network diameter is (7) Xiaomeisha Waterfront Park, and
the smallest value is (11) Guanlan Printmaking Village. For the average path length, the
largest value is (7) Xiaomeisha WaterFront Park, and the smallest value is (11) Guanlan
Printmaking Village. For the average clustering coefficients, the largest value is (22) Happy
Coast, and the smallest value is (21) Yangtaishan Forest Park.
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Figure 12. Complex network metrics for the travel networks of each attraction.

We created a spatial interaction intensity map between attractions (shown in Figure 13)
using the number of tourist trips between different attractions. In Figure 13, the nodes
indicate the 26 tourist attractions, and the edges indicate the flow connection between the
attractions. We used the natural breakpoint method to divide the number of tourist trips
into three classes. The red edges have the highest number of trips, the blue edges have the
second highest, and the lowest is the grey edges. Notably, the internal attractions in the
east and west are closely linked, while the surrounding attractions are less connected. The
Window of World, Jinxiu China Folk-Custom Village, Happy Coast, and Happy Valley have
the highest trip volumes, forming a tight cluster. The main flow of tourists between the east
and west attractions lies between Dameisha and Window of World. The Qingqing World,
Holland Shenzhen Flower Town, Safari Park, Dafen Village, and Zhongyingjie are located
at the boundary of the network structure, and the scenic nodes are sparsely connected to
other nodes. Furthermore, the abovementioned also indicates that tourist flows during the
holiday period are mainly concentrated in areas with better tourism development, dense,
and rich resources, and high accessibility.
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4. Discussion

(1) Analysis of tourism travel models.
For the distribution model, there are various models to describe the distribution pat-

terns of travel distance and travel time in trajectory data, such as power law distribution,
exponential distribution, exponentially truncated power law distribution, lognormal distri-
bution, and gamma distribution. Brockmann [36] observed that human travel distances
show a power law distribution. Yan [37] argued that the mode of transportation affects the
aggregated travel patterns, and the displacement from a single mode traffic should follow
an exponential distribution rather than a power law. Liang [38] argued that the displace-
ment of taxi passenger trips follows an exponential decay. Zhang explored urban mobility
in Harbin, China, and found that travel distances follow a log-normal distribution [39].
Veloso found that the gamma distribution can describe the travel distance of taxis [40].
From the above studies, it can be seen that the travel time and distance patterns contained
in the trajectory data are difficult to represent using a uniform model in different data sets
and study areas. In this study, through the modeling and comparative analysis of travel
distances, we found that the GEV model better represents the characteristics of tourist
trips on ‘May Day’. It can describe the climbing and falling characteristics in trips. In line
with the pattern derived from the other data, all data fall into the long-tail distribution,
which represents a decreasing volume of traffic over long distances. However, the GEV
fits the data better in describing the climbing characteristics. One of the possible reasons
for this is that the combination of the layout characteristics of tourism resource and the
weather factors lead to the need for more comfortable transportation when visiting the
close attractions. This phenomenon could describe the preference of tourists for taxi travel,
which would help to plan an efficient and effective transport system that facilitates the
turnover of tourists between multiple attractions. Moreover, this phenomenon is expected
to guide them in making informed decisions about transportation services when visiting
multiple attractions.

For travel mobility models, most of the previous literature has given flow patterns
between destinations [41]. In contrast, few studies have been devoted to modelling intra-
destination flows. It is therefore important to clarify the patterns of intra-destination
flows [42], particularly the characteristics of city-scale tourism flows. In many countries,



www.manaraa.com

ISPRS Int. J. Geo-Inf. 2021, 10, 445 15 of 18

taxis are the preferred mode of travel for many trips, especially for individuals conducting
business and tourism. Existing studies of travel behavior using trajectory data focus on
the transportation characteristics of commuters in general. In this study, we analyzed the
structural characteristics of taxi travel networks between intra-city attractions. McKercher
and Lew [43] gave four mobility patterns for tourists, such as single destination with or
without side trips, transit leg and circle tour, circle tour with or without multiple access, and
hub-and-spoke style. These patterns can be used to guide tourism product development.
However, it is difficult to adapt to the needs of transportation organization and synergistic
development planning among multiple attractions. We used taxi OD data and tourist
volume to establish a flow network between multiple attractions. The results reported in
this study shows that taxi trip data can reveal the spatial use behavior of tourism resources,
which can be used to guide tourism product development, and tourism route organization
and planning.

For the modeling of impact factors, a lot of meaningful work has been done. Urban
taxi travel is closely related to geographic location, particularly sociodemographic distribu-
tion and built environment characteristics [1]. Compared to previous studies, this study
focuses on the impact of the built environment. Considering the difficulty of obtaining taxi
trajectory data and the demographic characteristics of tourists at the same time, we built a
geographically weighted regression model with trip density as the dependent variable and
POIs within the buffer as the explanatory variable to help explain the spatial imbalance
of tourist trips. Since it is difficult to build the range of environmental factors influencing
travel, we conducted a buffer zone analysis at seven different scales to build models that
may accommodate more explanatory variables. Through experiments, we found that the
modellable variables that can explain the characteristics of trip occurrence are different. At
100 m, the associated influence of various types of POI is more effectively expressed.

(2) Implications for tourism transportation planning.
This study analyzed the characteristics of urban tourist trips from a spatiotemporal

and network perspective. The results show that the morphological structure of cities
and the uneven distribution of tourism resources are one of the main reasons for the
hot and cold distribution of tourist trips. In such a scenario, a single mode of transport
affects the willingness and impression of urban tourism travel. Moreover, as a fast means
of transport, the need for drivers to make a profit affects the spatial distribution of the
passenger-finding process, as they prefer to go to places where there is a high population
density. This also generates competitive pressure to travel. For urban tourism resources to
be favoured by the public, the development of time-saving, long-distance transportation
modes is a necessary part of a sustainable urban tourism system. Taking Shenzhen as
an example, the data collection year for this study was 2015, when there were five metro
lines and a lack of metro lines in the northern and eastern parts of the city. When taxis are
not adequately distributed, the public has to rely on buses, which may lead to increased
travel time and reduced willingness to travel. The Shenzhen government is also working
to improve transport conditions, although the main goal is to serve the needs of daily
commuting and mobility, which invariably also benefits the city’s tourism industry. As
of 2020, Shenzhen has 11 metro lines, and travel conditions in the east and north have
been significantly improved. Moreover, since 2016, Shenzhen has developed shared cars
that can be hailed via smartphones and picked up at the departure point on time. These
modes of transportation facilitate the tourism travel from long distances and bridge the
imbalance in the spatial distribution of taxicabs carrying tourists. Overall, taxis are one
of the most important parts of urban tourism transport systems. However, to achieve
sustainable urban tourism, opening long-distance metros and increasing car sharing will
help to satisfy tourism travel in suburban areas and improve the equity of urban tourism,
the image of urban tourism and tourist satisfaction.

(3) Limitations.
There are various modes of transport that can be used for urban tourism, such as

metros, buses, and taxis. Recently, car sharing has gradually emerged as a new transport
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mode for the public. This study focuses only on taxi travel during a single time period,
‘May Day’, which has limitations in terms of the comprehensiveness of the transport modes.
However, the related data analysis methods are applicable to other transport modes, and
the results are reliable when compared to traditional manual tourist surveys, especially
for transport modes such as taxis where on-site survey data is difficult to collect. Another
limitation is the extraction methods for tourist trips. Given the random nature of taxi
drop-off locations, it is difficult to define a precise area at the entrance of a tourist attraction
to assist in extracting reliable trips. However, we tried to ensure the quality of the data and
the accuracy of the drop-off areas, such as, by setting different drop-off areas for different
attraction entrances and road layouts, and by combining Baidu Street View and Google
satellite images to correct the drop-off areas to take into account the congestion of tourist
traffic in ‘May Day’.

5. Conclusions and Future Work

In this study, we investigated the spatial distribution characteristics of tourist trip
origins and their correlation with geographical contextual factors, as well as the structural
characteristics of tourist travel networks. First, we used the KDE algorithm to analyze the
spatial aggregation characteristics of tourist trip origins. The results show that tourist trips
are concentrated in areas with a high distribution of tourist attractions and urban entry/exit
ports. Second, we examined the spatial dependence of tourist trips using Getis-Ord Gi*
and found that urban spatial structure, morphological characteristics, and the distribution
of tourist resources can have an impact on tourist taxi trips. Third, we explored the
correlations between the tourist trip origins and urban geographic contextual factors using
the GWR model. The results revealed significant differences in the correlations between
tourist trips and the factors. Finally, we constructed travel networks and quantified and
compared them using complex network metrics. Other interesting insights were found that
are either consistent or inconsistent with some preconceived ideas and related research.
First, the trend between the coverage of the tourism network and the volume of tourist
trips is similar. Furthermore, for attractions with high coverage, the peak in tourist volumes
occurs on the second day of the tourism period. Attractions in the middle of the coverage
rankings show a downward trend in tourist volumes. Second, the spatial interaction
intensity between urban tourist attractions has two structural characteristics: grouping
and hierarchy. However, the groups are not evenly distributed spatially. This is one of the
reasons why there is a big difference between the hot and cold tourist trips from the north
and south of Shenzhen.

Compared with other public transport data, taxi GNSS records have higher accuracy
for location and time stamping, which can reveal people’s movement patterns with reliabil-
ity. Here, we have only analyzed the tourist characteristics in ‘May Day’, and in the future,
we aim to obtain data for the same period over several years and carry out a comparative
analysis covering other tourist seasons in China, such as the National Day. Moreover, we
will focus on the environmental semantic features of traffic around tourist attractions to
assist in tourism product development and tourist moderation.
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